Tencent Hunyuan Open-Sources Hunyuan-MT-7B and Hunyuan-MT-Chimera-7B: A State-of-the-Art Multilingual Translation Models

Tencent Hunyuan Open-Sources Hunyuan-MT-7B and Hunyuan-MT-Chimera-7B: A State-of-the-Art Multilingual Translation Models

 

Introduction

Tencent’s Hunyuan team has released Hunyuan-MT-7B (a translation model) and Hunyuan-MT-Chimera-7B (an ensemble model). Both models are designed specifically for multilingual machine translation and were introduced in conjunction with Tencent’s participation in the WMT2025 General Machine Translation shared task, where Hunyuan-MT-7B ranked first in 30 out of 31 language pairs.

https://github.com/Tencent-Hunyuan/Hunyuan-MT/blob/main/Hunyuan_MT_Technical_Report.pdf

Model Overview

Hunyuan-MT-7B

  • A 7B parameter translation model.
  • Supports mutual translation across 33 languages, including Chinese ethnic minority languages such as Tibetan, Mongolian, Uyghur, and Kazakh.
  • Optimized for both high-resource and low-resource translation tasks, achieving state-of-the-art results among models of comparable size.

Hunyuan-MT-Chimera-7B

  • An integrated weak-to-strong fusion model.
  • Combines multiple translation outputs at inference time and produces a refined translation using reinforcement learning and aggregation techniques.
  • Represents the first open-source translation model of this type, improving translation quality beyond single-system outputs.
https://github.com/Tencent-Hunyuan/Hunyuan-MT/blob/main/Hunyuan_MT_Technical_Report.pdf

Training Framework

The models were trained using a five-stage framework designed for translation tasks:

  1. General Pre-training
    • 1.3 trillion tokens covering 112 languages and dialects.
    • Multilingual corpora assessed for knowledge value, authenticity, and writing style.
    • Diversity maintained through disciplinary, industry, and thematic tagging systems.
  2. MT-Oriented Pre-training
    • Monolingual corpora from mC4 and OSCAR, filtered using fastText (language ID), minLSH (deduplication), and KenLM (perplexity filtering).
    • Parallel corpora from OPUS and ParaCrawl, filtered with CometKiwi.
    • Replay of general pre-training data (20%) to avoid catastrophic forgetting.
  3. Supervised Fine-Tuning (SFT)
    • Stage I: ~3M parallel pairs (Flores-200, WMT test sets, curated Mandarin–minority data, synthetic pairs, instruction-tuning data).
    • Stage II: ~268k high-quality pairs selected through automated scoring (CometKiwi, GEMBA) and manual verification.
  4. Reinforcement Learning (RL)
    • Algorithm: GRPO.
    • Reward functions:
      • XCOMET-XXL and DeepSeek-V3-0324 scoring for quality.
      • Terminology-aware rewards (TAT-R1).
      • Repetition penalties to avoid degenerate outputs.
  5. Weak-to-Strong RL
    • Multiple candidate outputs generated and aggregated through reward-based output
    • Applied in Hunyuan-MT-Chimera-7B, improving translation robustness and reducing repetitive errors.

Benchmark Results

Automatic Evaluation

  • WMT24pp (English⇔XX): Hunyuan-MT-7B achieved 0.8585 (XCOMET-XXL), surpassing larger models like Gemini-2.5-Pro (0.8250) and Claude-Sonnet-4 (0.8120).
  • FLORES-200 (33 languages, 1056 pairs): Hunyuan-MT-7B scored 0.8758 (XCOMET-XXL), outperforming open-source baselines including Qwen3-32B (0.7933).
  • Mandarin⇔Minority Languages: Scored 0.6082 (XCOMET-XXL), higher than Gemini-2.5-Pro (0.5811), showing significant improvements in low-resource settings.

Comparative Results

  • Outperforms Google Translator by 15–65% across evaluation categories.
  • Outperforms specialized translation models such as Tower-Plus-9B and Seed-X-PPO-7B despite having fewer parameters.
  • Chimera-7B adds ~2.3% improvement on FLORES-200, particularly in Chinese⇔Other and non-English⇔non-Chinese translations.

Human Evaluation

A custom evaluation set (covering social, medical, legal, and internet domains) compared Hunyuan-MT-7B with state-of-the-art models:

  • Hunyuan-MT-7B: Avg. 3.189
  • Gemini-2.5-Pro: Avg. 3.223
  • DeepSeek-V3: Avg. 3.219
  • Google Translate: Avg. 2.344

This shows that Hunyuan-MT-7B, despite being smaller at 7B parameters, approaches the quality of much larger proprietary models.

Case Studies

The report highlights several real-world cases:

  • Cultural References: Correctly translates “小红薯” as the platform “REDnote,” unlike Google Translate’s “sweet potatoes.”
  • Idioms: Interprets “You are killing me” as “你真要把我笑死了” (expressing amusement), avoiding literal misinterpretation.
  • Medical Terms: Translates “uric acid kidney stones” precisely, while baselines generate malformed outputs.
  • Minority Languages: For Kazakh and Tibetan, Hunyuan-MT-7B produces coherent translations, where baselines fail or output nonsensical text.
  • Chimera Enhancements: Adds improvements in gaming jargon, intensifiers, and sports terminology.

Conclusion

Tencent’s release of Hunyuan-MT-7B and Hunyuan-MT-Chimera-7B establishes a new standard for open-source translation. By combining a carefully designed training framework with specialized focus on low-resource and minority language translation, the models achieve quality on par with or exceeding larger closed-source systems. The launch of these 2 models provides the AI research community with accessible, high-performance tools for multilingual translation research and deployment.


Check out the , , and . All credit for this research goes to the researchers of this project. Feel free to check out our . Also, feel free to follow us on  and don’t forget to join our  and Subscribe to .

The post appeared first on .

Leave a Comment